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The yield and enantioselectivity of an asymmetric aldol

reaction, catalyzed by a proline derivative immobilized on

polystyrene via dipolar cycloaddition, are remarkably improved

by the dendronization of the support.

Among heterogeneous dendritic catalytic systems reported over

the past few years, most were assembled on dendritic templates,

prepared stepwise via solid-phase synthesis on insoluble organic or

inorganic supports.1 As we earlier demonstrated, some of these

systems exhibit positive dendritic effects on activity and chemo-

selectivity.2 Reduced cross linking upon coordination of the

ligands to a metal center and differences in population of metal

species on the dendronized support were postulated as major

reasons for the effects. Since all known supported dendritic

catalytic systems involve an active organometallic catalyst or

reagent, the question must be asked, whether in the absence of

factors related to metal coordination, the dendritic interface affects

the polymer-supported catalysis. To address this subject, we

decided to study a supported dendritic asymmetric organocatalytic

system. Such systems have never been prepared or explored.3

Moreover, a positive dendritic effect on the enantioselectivity has,

thus far, been observed in heterogeneous catalysis only for the

addition of diethylzinc to benzaldehyde.4

L-proline, a natural amino acid, is one of the most prominent

organocatalysts. This catalyst rendered high yields and enantio-

selectivities in Michael addition, Robinson annulation and a

variety of a-substitutions of aldehydes and ketones, particularly

the aldol reaction.5 Although the chemistry of L-proline in solution

is being intensively investigated, only a limited number of

heterogeneous proline-based catalysts have thus far been reported.6

Mostly, these are proline-containing peptides catalyzing the aldol

reaction of acetone and aromatic aldehydes,6a–c which are

dependent on an acidic OH bond of the nearby amino acid or

Lewis acid additive in order to ensure high enantioselectivity. Only

a moderate ee was reported for the aldol reaction of aliphatic

aldehydes with acetone catalyzed by proline directly tethered to a

support through the carboxylate.6e Hydroxyproline is an attractive

building block for proline-like catalysts, as its immobilization via

the hydroxy group leaves the amine and carboxylate functions

available for catalysis. Such an approach recently led to the

preparation of a homogeneous dendritic organocatalyst.7

Surprisingly, a single publication in 1985 describing a moderate-

yield and low-selectivity catalyst for the Hajos–Parrish reaction

remained the only example of such a mode of immobilization until

very recently,8a when a few examples of immobilized hydroxypro-

line-derived catalysts were communicated.8b–d

Herein we report the preparation of non-peptidic hydroxypro-

line-based catalysts on dendronized supports and their exploration

in an asymmetric aldol reaction. Polystyrene-bound poly(aryl

benzyl ether) dendrons were exploited in this study (e.g. second

generation dendron in Fig. 1).9

To our disappointment, all attempts to immobilize the

unprotected or protected (2S,4R)-4-hydroxyproline via the

hydroxy function on benzyl halide-terminated supports failed or

led to low yield/purity products. Consequently, we adopted the

Sharpless procedure of the Huisgen azide–alkyne dipolar cycload-

dition as the strategy for immobilization of the catalytic units.10

For this purpose, the methyl ester of the hydroxyproline (1) was

protected with trityl and reacted with propargyl bromide, forming

the methyl ester of (2S,4R)-O-propargyl-N-trityl-4-hydroxyproline

(3, Scheme 1).11 The polymer-bound benzylic halides (Wang

Bromo polystyrene and chloromethyl-terminated first to third

generation resins, Gn(Cl)) were converted to benzyl azide resins

Gn(N3) (n 5 0–3, Scheme 2), and thereafter cleanly reacted with 3

to form the cycloaddition product Gn(Tr-Pro-OMe).12 A quanti-

tative two-step conversion was achieved for all resins and the

products were characterized by gel-phase 13C NMR on the resin

and by 1H, 13C NMR and MS in solution, following acidolytic

cleavage.{ The deprotection of the proline units was carried out

with a 0.2% TFA solution in DCM (trityl deprotection) and LiOH
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Fig. 1 Supported second generation polyether dendron (G2(X)).

Scheme 1 Reagents and conditions: (a) TrBr, Et3N, DCM, rt, 2 h; (b)

NaH, propargyl bromide, THF, 60 uC, 4 h.
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in THF–H2O (methyl ester hydrolysis), releasing the amine and

carboxylate functions and forming the catalytic resins Gn(Pro).§

Importantly, the 13C NMR demonstrated that the proline units are

diastereomerically pure, thus negating the possibility of the

a-carbon epimerization during the deprotection steps.

The asymmetric transformation chosen to evaluate the dendritic

catalysts is the aldol reaction, particularly the reactions of

benzaldehyde and 4-nitrobenzaldehyde with acetone, investigated

previously with proline catalysts in solution. When carried out in

DMSO at room temperature, these reactions revealed a remark-

able influence of the dendronization on the conversion, yield and

enantioselectivity (Scheme 3, Table 1). For benzaldehyde,

quantitative conversion and satisfying yield (58%) are achieved

in 4 days with the 2nd generation catalyst as compared with the

low yield and conversion (34% and 42% respectively) of the non-

dendritic analogue. Moreover, the enantiomeric excess, induced by

the non-dendritic G0(Pro), is only 27% while, for the dendritic

catalyst, it reaches 68%. For 4-nitrobenzaldehyde, the dendroniza-

tion also positively affects the reaction outcome with a remarkable

increase in ee (85% vs. 47%). Notably the enantioselectivity with

G1(Pro) and G2(Pro) is higher than that achieved in solution with

L-proline.13

For the second series of experiments, we broadened the set of

catalysts under investigation, to include the third generation

catalyst G3(Pro) and the mono-proline linear-spacer analogues of

the first and second generation catalysts, G1(mono-Pro) and

G2(mono-Pro) (Scheme 4). The experiments focused on benzalde-

hyde, a more challenging substrate for the aldol reaction, and

examined also the efficiency of the catalyst recycling, while the

single run time was increased to 9 days (Table 2). From this series

of experiments, it is evident that the activity, upon recycling of the

catalyst, is negatively affected by the dendronization. While

G0(Pro) can be recycled several times, the conversion and yield

upon recycling of G1(Pro), G2(Pro) and G3(Pro) decrease

significantly. Remarkably, the enantioselectivity is practically

unaffected by the recycling. These findings point to decomposition

of the catalyst as a cause of reduced activity upon recycling. A

similar effect (though to a lesser extent) was observed in other

Scheme 2 Reagents and conditions: (a) NaN3, TBAI, DMF, 60 uC, 24 h;

(b) 3, sodium ascorbate, CuSO4, DMF, 50 uC, on; (c) 0.2% TFA in DCM,

rt, 5 min; d) LiOH, THF–H2O, 40 uC, 4 h.

Scheme 3 The model reaction.

Table 1 The model aldol reaction with polymer-bound prolinea

Catalyst R Conversionb (%) Yieldb (%) eec (%)

G0(Pro) H 42 34 27
G1(Pro) H 73 52(49) 68
G2(Pro) H 100 58 68
G0(Pro) NO2 88 87 47
G1(Pro) NO2 100 95 85
G2(Pro) NO2 100 90 84
a Reaction conditions: 1 equiv. of aldehyde, 27 equiv. of acetone in
DMSO (4 mL of DMSO per 1 mL of acetone), 0.3 equiv. of
polymer-bound proline, 4 d, rt. b Conversions and yields determined
by NMR, isolated yield in parentheses. c ee determined by HPLC.

Scheme 4 Reagents and conditions: (a) 3-hydroxybenzyl alcohol, LiH, TBAI, DMF, 60 uC, on; (b) PPh3, C2Cl6, THF, rt, on; (c) NaN3, TBAI, DMF,

60 uC, 24 h; (d) 3, sodium ascorbate, CuSO4, DMF, 50 uC, on; (e) 0.2% TFA in DCM, rt, 5 min; (f) LiOH, THF–H2O, 40 uC, 4 h.

Table 2 The catalytic experiments with an expanded set of catalystsa

Catalyst Cycle Conversionb (%) Yieldb (%) eec (%)

G0(Pro) 1 46 34 29
G0(Pro) 2 44 31 32
G0(Pro) 3 45 32 32
G1(Pro) 1 96 50 68
G1(Pro) 2 71 49 72
G1(Pro) 3 47 38 72
G2(Pro) 1 100 58(55) 67
G2(Pro) 2 38 25 64
G2(Pro) 3 37 15 66
G3(Pro) 1 100 35(32) 71
G3(Pro) 2 38 25 72
G3(Pro) 3 12 6 ndd

G1(mono-Pro) 1 61 36(34) 27
G1(mono-Pro) 2 46 32 32
G1(mono-Pro) 3 42 34 31
G2(mono-Pro) 1 69 35 24
a Reaction conditions: 1 equiv. of aldehyde, 27 equiv. of acetone in
DMSO (4 mL of DMSO per 1 mL of acetone), 0.3 equiv. of
polymer-bound proline, 9 d, rt. b Conversions and yields determined
by NMR, isolated yields in parentheses. c ee determined by HPLC.
d nd 5 not determined.

2824 | Chem. Commun., 2007, 2823–2825 This journal is � The Royal Society of Chemistry 2007



studies with catalysts derived from proline immobilized on solid

and soluble polymers.6a,14 It seems that although the catalytic

activity of proline units is boosted by the dendronization, so are

the rates of unwanted reactions leading to their decomposition. It

is likely that for higher generation catalysts (G3, or even G2) the

deactivation/decomposition of the proline units already takes its

toll on the aldol reaction outcome during the first run. Thus the

optimal performance of the catalyst is observed for the first- or

second-generation constructs. Elaborating the dendritic structure

to the third generation is counter-productive as, in addition to the

increased difficulty of preparation, the performance deteriorates.

To better understand the factors behind the dendritic effects, we

designed G1(mono-Pro) and G2(mono-Pro), with linear spacer

imitations of the dendritic first- and second-generation spacers

(Scheme 4). These catalysts provided only moderate conversion,

low yield and low enantioselectivity (similar to the performance of

G0(Pro)). These results demonstrate that the effects are not the

reflection of the lengthening of the tether between the proline and

the polymer, but are caused by the dendritic branched architecture

of the spacer itself. The lack of further improvement in ee beyond

G1(Pro) hints at the proximity of two proline moieties in the

terminal units as the source of the effect, though additional

influences of the dendritic architecture of the spacer on the

enantioselectivity can not be ruled out.

In conclusion, we applied a new mode of immobilization of

proline-based catalysts to the regular and dendronized polymeric

supports. We demonstrated the remarkable positive influence of

the dendritic spacers on the aldol reaction with these catalysts,

where first and second generation catalysts exhibited yields and

enantioselectivities comparable to or even exceeding those

obtained with proline in solution. Using the model catalysts with

the linear spacers, we proved that not the length of the spacer, but

its dendritic/branched nature is important for the increase in the

activity and selectivity of the systems. Additional experiments,

aimed at the understanding of the mechanism of the dendritic

effect and the improvement of the recyclability of the catalyst, are

underway.
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§ Typical procedure for deprotection: Synthesis of G1(Pro). The resin
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